
预训练语言模型：架构、范式与设计哲学

2

➢范式一：自编码模型 (AE)

➢范式二：自回归模型 (AR)

➢范式三：编码器-解码器模型

概要

3

➢浅层、上下文无关的表示 (Shallow, Context-Independent Representations)

➢Word2Vec, GloVe 等词嵌入技术，一个词对应一个固定向量

➢无法解决一词多义问题 (例如 "bank" 在 "river bank" vs "investment bank" 中含义不同)

➢模型从零开始学习语法和语义，效率低下

➢对任务特定标注数据的重度依赖 (Heavy Reliance on Task-Specific Labeled Data)

➢每个下游任务 (情感分析、实体识别等) 都需要一个独立的、从头训练的模型 (如 LSTM, GRU)

➢浪费了互联网上唾手可得的海量无标签文本中蕴含的通用语言知识。

➢能否构建一个通用的、深度的语言知识模型，通过在海量无监督数据上预训练，然后

快速迁移到各种下游任务？

➢类比： 寻求NLP领域的“ImageNet时刻”

根本问题：知识获取与迁移的鸿沟

4

➢此两阶段的过程，根本性地改变了NLP任务的执行方式

➢预训练阶段 (Pre-training Phase)

➢目标： 学习通用的语言表示

➢数据： 海量无标签文本 (如维基百科、书籍、网页)

➢方法： 设计一种自监督学习 (Self-supervised Learning) 任务，让模型从数据自身中学习

➢产出： 一个包含了丰富语法、语义和世界知识的深度神经网络——预训练语言模型 (PLM)

➢微调阶段 (Fine-tuning Phase)

➢目标： 适配特定的下游任务

➢数据： 少量的任务相关标注数据 (如带情感标签的评论)

➢方法： 在预训练模型的基础上，添加一个小的任务头 (Task-specific Head)，并用任务数据进

行端到端的权重更新

➢优势： 极大地提升了性能、数据效率和泛化能力

预训练 (Pre-training) & 微调 (Fine-tuning) 范式

5

➢Transformer架构的出现，是实现大规模预训练成为可能的关键。

➢核心创新：自注意力机制 (Self-Attention)

➢完全替代了RNN的循环结构。

➢为序列中的每个词元计算一个加权平均的上下文表示，权重由词元间的相关性动态决定。

➢公式核心：Attention(Q, K, V) = softmax(QK^T / sqrt(d_k))V

➢带来的革命性优势：

➢并行计算能力： 彻底摆脱序列依赖，所有词元的计算可以同时进行，极大提升了训练效率。

➢长距离依赖捕捉： 任意两个位置间的路径长度为 O(1)，能高效捕捉远距离的语义关联。

➢可扩展性 (Scalability): 使得训练拥有数百亿甚至数千亿参数的超深模型成为现实。

➢结论： Transformer为承载和学习海量文本中的复杂知识提供了完美的架构载体。

架构基石：Transformer 与自注意力机制

6

➢基于Transformer，根据预训练任务和架构选择的不同，演化出三大主流范式。它们

的设计哲学决定了其能力边界。

➢自编码模型 (Auto-Encoding Models)

➢哲学： 理解是核心 (To Understand)

➢代表： BERT

➢自回归模型 (Auto-Regressive Models)

➢哲学： 生成是核心 (To Generate)

➢代表： GPT

➢编码器-解码器模型 (Encoder-Decoder Models)

➢哲学： 转换是核心 (To Transform)

➢代表： T5, BART

三大主流预训练范式

范式一：自编码模型 (AE)

8

➢语言的根本困境在于其固有的歧义性（Ambiguity）

➢一个孤立的词语，甚至一个不完整的句子，其含义都是不确定的。词语的精确意义是

在其所处的上下文（Context）中被动态“塑造”和“确定”的

➢起决定性作用的上下文，同时包含了左侧上下文（前文）和右侧上下文（后文）

➢左侧上下文提供背景和历史信息

➢右侧上下文则提供限定、修正和澄清

➢忽略任何一方，都会导致对语言的理解出现偏差甚至完全错误。这便是所有语言理解任务

（Natural Language Understanding, NLU）面临的根本挑战

语言的歧义性与上下文依赖

9

➢静态词向量 (Word2Vec, GloVe)

➢上下文无关的。无论“bank”出现在“river bank”还是“investment bank”中，其向量都是固

定的，这从根本上无法捕捉语义的丰富性

➢单向上下文模型 (如从左到右的LSTM, GPT-1)

➢它们在预测或表示一个词时，只能利用其左侧（历史）信息。这对于生成任务是自然的，但

对于理解任务则损失了一半的关键信息。一个词的精确含义往往由其左右两侧的语境共同决定

➢浅层双向模型 (ELMo, Bi-LSTM)

➢ELMo通过独立训练一个前向LSTM和一个后向LSTM，然后将它们的隐状态拼接起来，为每

个词生成上下文相关的表示。但两个网络信息只在最顶层被简单地“粘合”在一起。这意味着，

左侧上下文如何影响右侧上下文的表示（反之亦然）这一深层交互被忽略了

前BERT时代的困境：上下文表示的“方向性”难题

10

➢核心思想： 通过破坏输入文本，训练模型恢复原文，从而学习深度的上下文表示

➢类比

➢完形填空专家: 它的任务是根据一个词左右两边的所有线索，推断出被遮盖的词

➢语言考古学家: 修复残缺的文献，需要对语言结构有深刻的理解

➢模型设计目标： 生成对自然语言理解 (NLU) 任务最优的、深度融合双向上下文的特

征表示

自编码模型 (AE): 双向的语境理解者

11

➢代表模型: BERT (Bidirectional Encoder Representations from Transformers)

➢为了实现深度双向的目标，BERT不能使用传统的“预测下一个词”的语言模型任务，

因为这会不可避免地引入单向性。如果模型能看到要预测的词本身，任务就变得毫无

意义。BERT的团队为此设计了两个巧妙的自监督任务

➢子主题解析：掩码语言模型 (Masked Language Model, MLM)

➢子主题解析：下一句预测 (Next Sentence Prediction, NSP)

➢架构： 仅编码器 (Encoder-Only)

AE核心机制：掩码语言模型 (Masked Language Model)

12

➢输入： 随机将输入句子中约15%的词元（Token）替换为一个特殊的 [MASK] 标记

➢The quick [MASK] fox jumps over the lazy dog.

➢掩码策略 (80-10-10规则): 对于这15%被选中的词元：

➢80% 的概率，用一个特殊的 [MASK] 标记替换它。 (例: the quick [MASK] fox)

➢10% 的概率，用一个随机的其他词元替换它。 (例: the quick apple fox)

➢10% 的概率，保持原样不变。 (例: the quick brown fox)

➢目标： 训练模型，使其仅利用 [MASK] 位置的最终隐藏层状态 h_[MASK]，来预测原

始词元 ("brown")。

➢在预测 [MASK] 时，模型可以无限制地访问其左侧和右侧的所有上下文，因此是双向

(Bidirectional) 的。

子主题解析：掩码语言模型

13

➢工作流程:

➢构造样本: 训练时，输入由两个句子对 (A, B) 构成。

➢50% 的概率，B是A在原始语料中的真实下一句（标签：IsNext）。

➢50% 的概率，B是语料库中随机抽取的一个句子（标签：NotNext）。

➢预测目标: 模型需要预测B是否是A的真实下一句。这个预测任务由输入序列开头的特殊标

记 [CLS] 的最终输出来完成。

➢后续演进与批判: 尽管初衷很好，但后续的研究（如RoBERTa, ALBERT）发现NSP

任务的设置过于简单，模型可能更多地是学习到句子间的主题相关性而非真正的逻辑

关系，甚至可能对性能产生负面影响。因此，许多后来的自编码模型都放弃或改进了

NSP任务。

子主题解析：下一句预测(NSP)

14

➢BERT只使用Transformer的编码器

➢一个典型的BERT-Base模型包含12层编码器，BERT-Large则有24层。

➢每个输入词元的表示由三部分相加而成

➢词元嵌入 (Token Embeddings): 词元本身在词汇表中的向量

➢片段嵌入 (Segment Embeddings): 用于区分句子对中的句子A和句子B

➢位置嵌入 (Position Embeddings): 用于向模型提供词元在序列中的位置信息，因为

Transformer本身不具备序列顺序的概念

➢最终输入形式为：[CLS] Sentence A [SEP] Sentence B [SEP]

BERT 架构与掩码语言模型 (MLM)

15

➢完全由Transformer的编码器（Encoder）模块堆叠而成

BERT的网络架构

BERT 宏观架构：编码器堆叠

输入嵌入 (Token + Position + Segment)

Encoder 1

Encoder 2

...

Encoder N (N=12 or 24)

最终输出表示 (上下文感知)

Transformer Encoder 模块

h(l)

多头自注意力

Add & Layer Norm

残差连接

前馈神经网络

Add & Layer Norm

残差连接

自编码模型 (BERT): 掩码语言模型 (MLM)

输入序列

The quick [MASK] fox

BERT Encoder (双向Transformer)

输出：上下文感知的词元表示

h_The h_quick h_[mask] h_fox

预测[MASK]的原始词
 "brown"

16

➢核心思想: 在预训练好的BERT模型之上，添加一个或多个简单的、通常是随机初始

化的网络层（称为“任务头”，Task-specific Head），然后在特定任务的有标签数

据上对整个模型（或仅仅是任务头）进行端到端的训练

下游任务微调 (Fine-tuning for Downstream Tasks)

预训练好的BERT模型 (参数已冻结或可微调)

BERT输出的上下文感知词元表示

...

a) 句子分类

分类器

b) 序列标注 (NER)

分类器 分类器 ...

c) 抽取式问答

Start/End 预测器

h_[CLS] h_2 h_Nh_1

17

➢优势

➢强大的NLU能力： 由于其双向性，它在需要深度语境理解的任务上表现卓越

➢应用： 情感分类、命名实体识别 (NER)、句子关系判断 (NLI)、问答 (QA)

➢局限

➢不擅长生成：预训练任务决定了它不是一个自然的文本生成器。其生成能力有限且通常不连

贯，结果往往是无序和重复的

➢预训练-微调差异: [MASK] 标记在预训练时存在，但在微调和推理时不存在，造成了训练和推

理阶段的数据分布不一致

➢BERT是深度双向表示的开创者，它站在ELMo（浅层双向）和GPT-1（单向）的肩膀

上，通过MLM任务和Transformer编码器，将预训练模型的性能推向了新的高度，真

正开启了NLP的“预训练-微调”范式时代。它更像一个强大的特征提取器，为下游

任务提供高质量的语义表示

AE: 优势与局限

范式二：自回归模型 (AR)

19

➢在Transformer时代之前，语言生成主要面临两大技术瓶颈

➢有限的上下文依赖。以n-gram模型为代表的传统统计方法，其核心缺陷在于马尔可夫假设。

无法捕捉决定语义的关键长距离依赖

➢序列计算的效率与梯度问题。循环神经网络及其变体在实践中受到两大制约

➢其固有的序列计算模式使其难以利用现代硬件进行大规模并行训练，严重限制了模型的扩展能力

➢长序列下普遍存在的梯度消失/爆炸问题，使得模型难以学习到真正跨越长距离的依赖关系。

➢因此，自回归预训练模型（以GPT为代表）的核心目标

➢构建一个可扩展的、能够捕捉长距离依赖的通用语言生成器

➢通过“预测下一个词”海量无监督文本上进行训练，从而将语言的语法结构、语义关系、乃

至蕴含的世界知识，内化到一个统一的深度神经网络中

➢其终极愿景是，任何语言任务都可以被重新定义为一个生成任务，通过提供不同的“提示”

（Prompt），模型就能生成相应的“答案”

如何对语言进行有效的概率建模与生成？

20

➢核心思想： 严格遵循从左到右的顺序，根据已生成上文，预测下一个最可能的词元

➢直觉类比

➢故事续写者 (Story Writer): 给定一个开头，它能逐词逐句地创作出连贯的后续内容

➢语言预言家 (Language Oracle): 永远在预测“接下来会发生什么”

➢设计目标： 建模文本的联合概率分布P(x1, … , xn) ，使其成为一个强大的自然语言生

成 (NLG) 引擎

自回归模型 (AR): 单向的序列生成者

21

➢输入： The quick brown fox

➢目标： 在每个时间步 t，模型根据前面的序列x1, … , xt−1 来预测 xt

➢信息流： 通过在自注意力层使用因果掩码 (Causal Mask)，模型在预测位置 t 时，只能访

问 t 及其之前的位置。信息流是单向 (Unidirectional) 的

➢目标： 对于由𝑇个词元组成的序列 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑇),其联合概率

➢𝑃(𝑋) = 𝑃(𝑥1) ⋅ 𝑃(𝑥2|𝑥1) ⋅ 𝑃(𝑥3|𝑥1, 𝑥2)⋯𝑃(𝑥𝑇|𝑥1, … , 𝑥𝑇−1) = ς𝑡=1
𝑇 𝑃(𝑥𝑡|𝑥<𝑡)

➢联合概率问题，转化成了一系列“预测下一个词”的条件概率问题

➢自回归模型的全部任务，就是学习一个强大的函数，来精确地建模这个条件概率 𝑃(𝑥𝑡|𝑥<𝑡)

AR核心机制：因果语言模型 (Causal Language Model)

22

➢自回归模型（如GPT）仅采用Transformer架构的解码器部分，其核心机制是因果自

注意力（Causal Self-Attention），即掩码自注意力（Masked Self-Attention）

➢实现“不能偷看未来”的关键

➢标准自注意力：在标准自注意力中，一个词元（Query）会与序列中所有其他词元（Keys）

计算注意力分数，从而聚合整个序列的信息

➢引入因果掩码。在因果自注意力中，计算注意力分数矩阵 Scores = QK𝑇 之后，会应用一个

上三角掩码矩阵。该矩阵将所有 j > i 的位置（即未来位置）的分数设置为一个极大的负数

➢Softmax效应。 当对这个被掩码的分数矩阵应用Softmax函数时，那些被设置为 -∞ 的位置的

注意力权重会变为0

➢确保计算第 i 个位置的输出表示时，模型只能关注到从第 1 到第 i 个位置的信息，而

完全无法获取任何未来（i+1 及之后）的信息，从而严格保证了自回归的单向信息流

架构实现：Transformer解码器与因果自注意力

23

因果自注意力机制图解

因果自注意力 (Causal Self-Attention) 工作流

1. 输入序列

x 1

x 2

x 3

2. 计算注意力分数 (QK
T
)

q 1

q 2

q 3

s11 s12 s13

s21 s22 s23

s31 s32 s33

3. 应用因果掩码

s11 - -

s21 s22 -

s31 s32 s33

4. Softmax & 输出

h 1

h 2

h 3

h₁ = f(x₁) (只依赖于 x₁)
h₂ = f(x₁, x₂) (依赖于 x₁ 和 x₂)
h₃ = f(x₁, x₂, x₃) (依赖于 x₁, x₂, 和 x₃)
在预测第 i 个词的输出 hᵢ 时，模型无法获取任何未来词元 (j > i) 的信息

k1 k2 k3

24

预训练 (Pre-training) 网络

➢以并行模式高效处理整个序列以计算损

失

预训练计算流程 (并行模式)

完整序列 Transformer

Decoder

(并行计算)

隐藏状态序列

并行计算所有位置的损失 (Loss)

用ht预测xt+1

h1,h2, ,hTx1,x2, ,xT

预训练架构细节展开

1. 输入表示层

词元 "cat"

Token Emb

位置 3

Positional Emb

+

x t
2. 单个Transformer解码器层 (共N层)

Causal Multi-Head Self-Attention

+
Add

Layer Norm

Feed-Forward Network

+
Add

Layer Norm

t
3. 输出与损失计算层

Linear Layer (to Vocab)

Softmax

P(xt+1|x<t)

ht(final)

25

➢分词器 (Tokenizer)

➢作用: 将原始文本字符串（如 "thinking machines"）切分为一系列的词元（Tokens）

➢机制: 现代大模型几乎都采用子词（Subword）分词算法，如BPE (Byte-Pair Encoding)

➢嵌入层 (Embedding Layer): 将离散的词元ID映射为连续的、稠密的向量

➢词元嵌入 (Token Embedding)

➢位置嵌入 (Positional Embedding)

➢最终输入向量 x = Token Embedding + Positional Embedding

输入表示层 (Input Representation)

26

➢由 N 个完全相同的解码器层 (Decoder Layer) 堆叠而成。数据每经过一层，其表示就

会被进一步提炼，变得更加抽象和上下文感知

➢子层1：因果多头自注意力 (Causal Multi-Head Self-Attention)

➢模型理解上下文的核心。它让每个词元能够“回顾”并加权聚合其前面所有词元的信息

➢子层2：逐位置前馈网络 (Position-wise Feed-Forward Network, FFN)

➢FFN对每个位置的向量进行一次独立的、非线性的深度加工

➢连接件：残差连接 (Add) & 层归一化 (Norm) 每个子层（注意力层和FFN层）都被包

裹在一个 Add & Norm 结构中

➢残差连接: 将子层的输入 x 直接加到子层的输出 SubLayer(x) 上，即 x + SubLayer(x)

➢层归一化: 对每个样本、每个层的输出向量进行归一化，使其均值为0，方差为1

核心计算引擎

27

➢语言模型头 (Language Model Head):

➢将最终的隐藏状态向量 h_t（维度为 d_model）转换为对下一个词元的预测。

➢损失函数

➢交叉熵损失

输出与损失计算层

28

➢以串行自回归模式，通过循环迭代逐词生成新文本

推理/生成 (Inference/Generation) 网络架构

推理计算流程 (串行自回归模式)

t = 1, 2, 3, ...

输入当前序列

Transformer Decoder

(利用 KV 缓存)

采样得到下一个词元

追加到序列

x1, ,xt

Xt+1

29

➢起始: 从一个初始的提示（Prompt）序列开始

➢迭代

➢将当前序列输入模型，获得最后一个位置的输出表示

➢将该表示通过一个线性层和Softmax函数，得到整个词汇表上关于下一个词元的概率分布

➢从该分布中采样一个词元。采样策略至关重要，常见的有

➢Greedy Search: 总是选择概率最高的词。易导致重复、乏味

➢Top-k Sampling: 在概率最高的k个词中按其概率进行采样。增加多样性

➢Nucleus (Top-p) Sampling: 在累积概率超过阈值p的最小词元集中进行采样。动态调整候选集大小，是

目前最主流的策略

➢将新采样的词元追加到序列末尾

➢重复此过程，直到生成结束标记或达到最大长度

生成过程

30

➢优势：

➢强大的NLG能力： 在开放式文本生成、对话、写作等任务上表现出色。

➢上下文学习 (In-context Learning): 大规模AR模型展现出惊人的能力，无需微调即可通过示例

(Prompt) 完成任务。

➢局限：

➢非最优的NLU表示： 单向信息流限制了其对整个句子上下文的深度理解，在NLU任务上天然

弱于AE模型。

➢暴露偏差 (Exposure Bias): 训练时接触真实数据，推理时依赖自身生成，可能导致错误累积。

AR: 优势与局限

范式三：编码器-解码器模型

32

➢BERT (Encoder-only)

➢卓越的“理解者”，它能为输入序列产出高质量的表示，但它本身不具备生成新序列的机制。

它能判断一个句子好不好，但写不出来

➢GPT (Decoder-only)

➢强大的“生成者”，它可以写出连贯的文本。但在处理Seq2Seq任务时，源序列只能作为其

生成开头的“提示(Prompt)”。由于其单向注意力机制，它在生成后续词元时，无法回头重新、

完整地审视整个源序列，这限制了其对源序列信息的保真度和利用率，容易出现事实偏离（在

摘要中）或意义漂移（在翻译中）

现有范式的局限

33

➢核心思想： 结合AE和AR的优点，先用一个双向编码器理解整个输入序列，再用一个

自回归解码器生成目标序列

➢直觉类比

➢专业翻译家 (Professional Translator): 先完整阅读并理解源语言句子（编码），然后在脑中形

成抽象语义，最后用目标语言流畅地表达出来（解码）

➢成为解决通用序列到序列 (Sequence-to-Sequence) 任务的强大框架

编码器-解码器 (Seq2Seq): 序列转换

34

➢架构： 完整的Transformer，包含编码器 (Encoder) 和解码器 (Decoder)。

➢信息流：

➢编码器: 对源序列进行双向编码，生成一套富含上下文的表示 memory。

➢解码器: 在生成目标序列的每个词元时，会执行两种注意力：

➢自注意力 (Self-Attention): 关注已生成的目标序列部分（单向）。

➢交叉注意力 (Cross-Attention): 关注编码器输出的全部 memory。这是关键，它让解码器在每一步都知道

完整的源序列信息。

Seq2Seq核心机制：编码器-解码器与交叉注意力

35

➢T5架构，Pre-LN

编码器 (Encoder)

Encoder Layer (1 of N)

...

Decoder Layer (1 of N)

Source Sequence Embeddings Target Sequence Embeddings

(Shifted Right)

C

K, V

(to every Decoder Layer)

Q

Autoregressive

Feedback Loop

解码器 (Decoder)

Multi-Head Self-Attention

Layer Normalization

Feed Forward Network

Layer Normalization

Masked Multi-Head Self-Attn

Layer Normalization

Multi-Head Cross-Attention

Feed Forward Network

Layer Normalization

Layer Normalization

Final Layer Normalization

Linear & Softmax

Output Probalilities

36

➢Post-LN

对比：Transformer架构

编码器 (Encoder) 解码器 (Decoder)

Encoder Layer (1 of N)

Multi-Head Self-Attention

Layer Normalization

Feed Forward Network

Layer Normalization

...

Decoder Layer (1 of N)

Masked Multi-Head Self-Attn

Layer Normalization

Multi-Head Cross-Attention

Layer Normalization

Feed Forward Network

Layer Normalization

Source Sequence Embeddings Target Sequence Embeddings

(Shifted Right)

Linear & Softmax

C

K, V

(to every Decoder Layer)

Q

Autoregressive

Feedback Loop

解码器 (Decoder)

37

➢预训练任务 (多样化):

➢T5 (Text-to-Text Transfer Transformer): 将所有NLP任务统一为“文本到文本”的填空形式。

➢BART: 采用去噪自编码器 (Denoising Autoencoder) 思想。对原文进行各种破坏，然后让模型

完整地恢复原文。

➢优势：

➢强大的条件生成能力： 在给定输入条件下生成目标输出的任务上是SOTA。

➢应用： 机器翻译、文本摘要、对话生成。

➢局限：

➢模型复杂度和参数量大： 同时包含编码器和解码器，计算成本更高。

Seq2Seq: 预训练、优势与局限

总结与思考

39

➢表格

总结与思考

特性 自编码（AE） 自回归（AR） 编码器—解码器（Seq2Seq）

核心架构 Encoder－Only Decoder－Only Encoder－Decoder

信息流 双向 单向（因果） 编码器双向，解码器单向

预训练任务 掩码语言模型（MLM） 因果语言模型（CLM） 去噪／文本到文本

设计哲学 理解（Understand） 生成（Generate） 转换（Transform）

核心优势 NLU任务（分类，NER） NLG任务（写作，对话） Seq2Seq任务（翻译，摘要）

代表模型 BERT，RoBERTa GPT系列，LLaMA T5，BART，mBART

40

➢纯粹的架构分类正在变得不那么绝对

➢Decoder-Only模型的“涌现”NLU能力

➢通过指令微调 (Instruction Tuning) 和思维链 (Chain-of-Thought) Prompting，大规模的AR模

型 (如GPT-3.5/4) 在复杂的NLU和推理任务上也能表现出色

➢它们不是通过专门的“表示”来解决问题，而是学会了在上下文中“生成”一个推理过程来

得到答案

➢例子

➢BERT (AE): 直接在[CLS]向量上接分类头，判断情感

➢GPT (AR): 通过Prompt Review: "This movie was great!" Sentiment: Positive. Review: "I hated this

film." Sentiment:，让模型续写出 Negative

➢结论： 规模和训练方法可以在一定程度上弥补架构上的天然倾向

批判性思考 (1): 范式界限的模糊化

41

➢统一的趋势 (The Unification Trend):

➢T5的“文本到文本”框架极具前瞻性，它预示了将所有任务统一到一个通用接口下的可能性。

➢现代LLM（如GPT-4, Gemini）通过统一的聊天接口处理各种任务，本质上也是这种思想的延

伸。

➢效率的挑战 (The Efficiency Challenge):

➢Transformer的自注意力机制具有 O(n^2) 的计算和内存复杂度，成为处理长文本的瓶颈。

➢研究热点： 各种近似注意力机制 (Efficient Transformers)，旨在将复杂度降低到 O(n)。

批判性思考 (2): 统一的趋势与效率的挑战

42

➢预训练语言模型知识谱系：演进之路

知识谱系：演进之路

预训练语言模型 ：

 表示

 or e o e

 层 表示

 o e o

 表示

双向理解

 (n o er n)

 的 模型

 o a

单向

 P (e o er n)

 模 模型

 P a

序列

 ri ina rans ormer

预训练 模型

 m

43

➢没有银弹： AE, AR, 和 Seq2Seq 是针对不同设计目标的权衡，不存在绝对的优劣，

只有是否适合特定场景。

➢规模是关键： 模型参数、数据量和计算量的巨大提升，是解锁“涌现能力”和推动

范式融合的核心驱动力。

➢未来方向：

➢多模态： 将文本、图像、声音等信息融合到统一的表示空间。

➢效率： 探索超越标准Transformer的更高效架构。

➢可控性与对齐： 如何让模型生成的内容更可靠、可控，并与人类价值观对齐 (Alignment)。

总结与展望

	05 预训练模型
	Slide 1
	概要
	根本问题：知识获取与迁移的鸿沟
	预训练 (Pre-training) & 微调 (Fine-tuning) 范式
	架构基石：Transformer 与自注意力机制
	三大主流预训练范式
	Slide 7
	语言的歧义性与上下文依赖
	前BERT时代的困境：上下文表示的“方向性”难题
	自编码模型 (AE): 双向的语境理解者
	AE核心机制：掩码语言模型 (Masked Language Model)
	子主题解析：掩码语言模型
	子主题解析：下一句预测(NSP)
	BERT 架构与掩码语言模型 (MLM)
	BERT的网络架构
	下游任务微调 (Fine-tuning for Downstream Tasks)
	AE: 优势与局限
	Slide 18
	如何对语言进行有效的概率建模与生成？
	自回归模型 (AR): 单向的序列生成者
	AR核心机制：因果语言模型 (Causal Language Model)
	架构实现：Transformer解码器与因果自注意力
	因果自注意力机制图解
	预训练 (Pre-training) 网络
	输入表示层 (Input Representation)
	核心计算引擎
	输出与损失计算层
	推理/生成 (Inference/Generation) 网络架构
	生成过程
	AR: 优势与局限
	Slide 31
	现有范式的局限
	编码器-解码器 (Seq2Seq): 序列转换
	Seq2Seq核心机制：编码器-解码器与交叉注意力
	Slide 35
	对比：Transformer架构
	Seq2Seq: 预训练、优势与局限
	Slide 38
	总结与思考
	批判性思考 (1): 范式界限的模糊化
	批判性思考 (2): 统一的趋势与效率的挑战
	知识谱系：演进之路
	总结与展望

